最新)电力变压器微机保护系统设计

来源:产品展示    发布时间:2023-11-13 11:10:25   阅读量:1

  版权说明:本文档由用户更好的提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

  1、目 录摘 要2绪 论3一、电力变压器的故障及异常运作时的状态5(一)电力变压器的故障5(二)电力变压器的不正常运作时的状态5(三)变压器发生故障的原因5(四)电力变压器故障的预防的方法6二、三相电力系统电力变压器的保护方式7(一)瓦斯保护原理分析7(二)差动保护7(三)电流速断保护11(四)过电流保护12(五)零序过电流保护15(六)变压器过负荷保护18三、微机保护设施的硬件电路原理19(一)微机保护设施19(二)微机保护设施的硬件结构21(三)提高微机保护设施可靠性的措施23四、保护配置与整定计算25(一)电力变压器保护配置25(二)保护参数分析与设备配置选择26(三)接线附录:总原理图4摘 要电力变压器是电力系统中非常非常重要的电气设备,它在整个电力系统中起着能量和电压转换的作用。它的运行是否安全,必然的联系到电力系统能否连续稳定地运行。鉴于电力变压器在系统中的重要性,电力变压器的保护一直受到世人的重视和关注。现如今,随着电力系统规模的逐步扩大和它在国民经济中地位的不断的提高,对其保护也提出了更高的要求,尤其在可靠性和快速性方面。本论文针对变压器保护的要求,围绕着变压器微机保护系统的研究展开设计工作。 论文首先介绍了微机继电保护的基础要求、微机保护技术和电力变压器接地保护。接下来在三相电力变压器的保护方式以瓦斯保护、差动保护、电流速断保护、变

  3、压器过负荷保护和过励磁保护中详细分析了电力电压器的保护。并在遥测量的测量中对变压器、采集模拟量测量值和模数转换对a/d转换器做多元化的分析和改进。在保护配置与整定计算详细分析、研究带时限的过电流保护整定计算及电流速断保护整定计算的具体算法;从实际运行中变压器的各种故障和不正常状态出发,介绍了变压器保护的基础要求和配置,在此基础上确定了本电力变压器微机保护系统的保护配置,并讲述了所配置的变压器保护的基础原理和具体参数。关键词:微机保护 电力变压器 变送器绪 论继电保护技术随着电力系统的发展而发展。同时也随着通信、信息、电子、计算机等有关技术的发展而不停地改进革新。为保护电机免受短路电流的破坏,首先出现了反

  4、应电流超过一预定值的过电流保护。熔断器就是最早的、最简单的的过电流保护方式,这种保护方式至今仍大范围的应用于低版线路和用电设备。熔断器的特点是融保护设施与切断电流的装置于一体,其结构最为简单。由于用电设备的功率、发电机的容量虽不断增大,发电厂、变电站和供电网的结线不断复杂化,电力系统中正常工作电流和短路电流都不断增大,熔断器己不能够满足选择性和快速性的要求,于是出现了作用于断路器的过电流继电器。19世纪80年代出现了用于断路器上直接反应一次短路电流的电磁型过电流继电器。1901年出现了感应型过电流继电器。1908年提出了比较被保护组件两端电流的电流差动保护原理。1910年方向性电流保护开始得到应用,

  5、20世纪20年代初距离保护设施出现。随着电力系统载波通讯的发展,在1927年前后,出现了利用高压输电线卜高频载波电流传送和比较输电线两端功率方向或电流相位的高频保护设施。20世纪50年代,微波中继通讯开始应用于电力系统,从而出现了利用微波传送和比较输电线两端故障电气量的微波保护。并提出了利用故障点产生的行波实现快速继电保护的设想,70年代终于诞生了行波保护设施。随着光纤通讯的出现便有了光纤保护的广泛应用,如光纤差动保护、光纤距离保护等。以上是继电保护原理的发展过程。与此同时,构成继电保护设施的组件、材料、保护设施的结构型式和制造工艺也发生了巨大的变革。20世纪50年代以前的继电保护设施都是由电

  6、磁型、感应型或电动型继电器组成的。这些继电器都具有机械转动部件,统称为机电式继电器。由机电式继电器组成的继电保护设施称为机电式保护设施这种保护装置体积大,消耗功率大,动作速度慢,机械转动部分和触点容易损坏或粘连,调试维护很复杂,不能够满足超高压、大容量电力系统的要求。目前正逐渐被淘汰。20世纪50年代,慢慢的出现了晶体管式继电保护设施。这种保护功率消耗小,动作速度快无机械转动部分,称之为电子式静态保护设施。随着大规模集成电路的发展,80年代后期,集成电路继电保护设施很快取代了晶体管继电保护设施,成为静态继电保护设施的主要型式。在60年代末,电子计算机一问世,便进行了对继电保护计算机算法的大量研究

  7、,为今天微型计算机式继电保护(以下简称微机继电保护)的发展奠定了理论基础。随着微处理器技术的迅速发展及其价格急剧下降,在70年代后期,出现了比较完善的微机保护样机,并投人到电力系统中试运行。80年代微机保护在硬件结构和软件技术方面已趋成熟。微机保护具有巨大的计算、分析和逻辑判断能力,有存储记忆功能,因而可用以实现任何性能完善巨复杂的保护原理。微机继电保护可连续不断地对本身的工作情况做自检,其工作可靠性很高。此外,微机继电保护可用同一硬件实现不同的保护原理,这使保护设施的制造大为简化,也容易实行保护设施的标准化。微机继电保护除了具有保护功能外,还有故障录波、故障测距、事件顺序记录,以及与调度计

  8、算机交换信息等辅助功能,这对于简化保护的调试、故分析和事故后的处理等都有重大意义。进人20世纪90年代以来,在我国得到大量应用,已成为继电保护设施的主要型式,是当今电力系统保护、控制、运行调度及事故处理的综合自动化系统的重要组成部分。随着计算机技术、微电子技术、网络通信技术、信息技术的持续不断的发展,最新研制的微机继电保护的体积更小,功能更强,性能更优,如硬件结构方面,采用具有强大数据处理功能的asp微处理芯片,低功耗可编程逻辑芯片(cpld)和高集成度专用芯片(asic)后,使装置的体积,功耗,可靠性等方面得到很大提升。我国微机继电保护正向微型化、网络化、智能化和人性化方面快速地发展。2.3 微机保

  9、护发展前途继电保护技术是随着电力系统的发展而发展起来的。电力系统的短路是不可避免的。由于电力系统的发展,用电设备的功率、发电机的容量不断增大,发电厂、变电站、和供电网的结线不断复杂化,电力系统中正常工作电流和短路电流都不断增大,熔断器已不能够满足选择性和快速性的要求,于是出现了作用于专门的断流装置的继电器。本世纪初随着电力系统的发展,继电器才开始大范围的应用于电力系统的保护。这一段时期可认为是继电保护技术发展的开端。本世纪20年代初,距离保护设施出现,50年代,微波中继通讯开始应用于电力系统继电保护。经过20余年的研究,诞生了行波保护设施。在继电保护原理的发展过程中,与此容是,构成继电保护设施的元件、

  10、材料等也发生了巨大的变革。从机电式保护设施,到晶体管式继电保护设施,再到集成电路继电保护装置。在60年代末,微型计算机应用到微机保护被提上日程,拥有巨大的潜力。继电保护技术的发展现状继电保护技术是随着电力系统的发展而发展的,它与电力系统对运行可靠性要求的逐步的提升紧密关联。熔断器就是最初出现的简单过电流保护,时至今日仍大范围的应用于低压线路和用电设备。由于电力系统的发展,用电设备的功率、发电机的容量不断增大,发电厂、变电站和供电网的结线不断复杂化,电力系统中正常工作电流和短路电流都不断增大,熔断器已不能够满足选择性和快速性的要求,于是出现了作用于专门的断流装置的过电流继电器。本世纪初随着电力系统的发展

  11、,继电器才开始大范围的应用于电力系统的保护。这一段时期可认为是微机保护技术发展的开端。微机继电保护技术的成熟与发展是近三十年来继电保护领域最显著的进展。经过长期的研究和实践,现在人们已普遍认可了微机保护在电网中无可替代的优势。微机保护具有自检功能,有强大的逻辑解决能力、数值计算能力和记忆能力,并且具备很强的数字通信能力,这一切都是电磁继电器、晶体管继电器所难以匹敌的。计算机技术的进步,更高性能、更高精度的数字外围器件的采用,一直是微机继电保护持续不断的发展的强大动力。一、电力变压器的故障及异常运作时的状态(一)电力变压器的故障电力变压器的故障分为内部和外部两种故障。内部故障指变压器油箱里面发生的各种故障,主要

  12、靠瓦斯和差动保护动作切除变压器;外部故障指油箱外部绝缘套管及其引出线上发生的各种故障,正常的情况下由差动保护动作切除变压器。速动保护(瓦斯和差动)无延时动作切除故障变压器,设备有没有损坏主要根据变压器的动稳定性。而在变压器各侧母线及其相连间隔的引出设备故障时,若故障设备未配保护(如低压侧母线保护)或保护拒动时,则只能靠变压器后备保护动作跳开相应开关使变压器脱离故障。因后备保护带延时动作,所以变压器必然要承受一定时间段内的区外故障造成的过电流,在此时间段内变压器有没有损坏主要根据变压器的耐热性。因此,变压器后备保护的定值整定与变压器自身的热稳定要求之间有着必然的联系。(二)电力变压器的不正常运

  13、行状态变压器外部短路引起短路的过电流,负荷长时间超过额定容量引起的过负荷,风扇故障或漏油等原因引发冷却能力的下降等,这些不正常运作时的状态会使绕组和铁芯过热。此外,对于中性点不接地运行的星形接线变压器,外部接地短路时有可能造成变压器中性点过电压,威胁变压器的绝缘;大容量变压器在过电压或低频率等异常运行工况下会使变压器过电励磁,引起铁芯和其他金属构件的过热。变压器处于不正常运作时的状态时,继电保护应该根据其严重程度,发出告警信号,使运行人员及时有效地发现并采取对应的措施,以确保变压器的安全。(三)变压器发生故障的原因1.避雷器接地电阻高由于避雷器接地电阻高,所以雷电流流过接地电阻时导致变压器外壳电位增高。当其

  14、超过一定数值时,就会引起变压器绝缘击穿损坏。2.避雷器接地引下线截面太小或长度太长截面太小在雷击时易被烧断,起不到保护作用,长度太长在某一陡度电流通过时,接地引下线上的压降与避雷器的残压叠加在一起,作用到变压器绕组上有可能破坏变压器绝缘。3.变压器本身缺陷根据原北京电力建设科学技术研究所调查、分析,14800台年配电变压器的运行经验表明:在雷击损坏事故中,大约有37%是因绝缘存在缺陷而引起的。4.过载由于电流的增加,变压器线圈温度迅速增加,造成绝缘材料变脆弱,加速老化,形成大量裂纹甚至脱落,严重时使线体,而造成匝间短路。或者由于外部故障冲击力导致绝缘破损,进而出现故障。5.线、非明确属于雷击事故,一般的冲击故障均被列为“线路涌流”。线路涌流(或称线路干扰)在导致变压器故障的所有因素中被列为首位。这一类中包括合闸过电压、电压峰值、线路故障/闪络以及其他输配方面的非正常现象。其中以变压器出口突发性短路危害最大,当变压器二次侧发生短路接地等故障时,一次侧将产生高于额定电流20-30倍的短路电流,而在一次侧必然要产生很大的电流来抵消二次侧短路电流的消磁作用,如此大的电流作用于高电压绕组上,线圈内部将产生很大的机械应力,致使线圈压缩,其绝缘衬垫、垫板就会松动脱落,铁芯夹板螺丝松驰,高压线圈畸变或崩裂,变压器极易出现故障。6.分接开关故障(1)变压器漏油使分接开关在空气中,裸

  16、露的分接开关绝缘受潮一段时间后性能直线下降,导致放电短路,损坏变压器。(2)变压器分接开关在频繁的调动中会造成触头之间的机械磨损、电腐蚀和触头污染,电流的热效应会使弹簧的弹性变弱,从而使动、静触头之间的接触压力下降。7.引线接头过热引线接头过热是常见的故障之一,若发生将造成导电杆与接线端子间打火,甚至损坏导电杆丝扣,烧断接头,同时发热会造成桩头密封圈老化渗油,油溢至套管,沾粘吸附上导电性的金属尘埃,当遇到潮湿天气、系统谐磁、雷击过电压等就有几率发生套管闪络放电或爆炸。8.其他原因(1)工艺、制造不良有少部分变压器故障是由于本身存在严重故障,例如:出线端松动或无支撑,垫块松动,焊接不良,铁芯绝缘不良,抗

  17、短路强度不足等。(2)维护不良变压器保护设施不正确,冷却剂泄漏,污垢淤积以及腐蚀受潮,连接松动等都属于维护不良范畴。保养不够被有关统计列为第四位导致变压器故障的因素。(四)电力变压器故障的预防的方法变压器故障有相当部分是可完全避免的,还有一些只要加强设备巡视严格按章操作,随便什么时间都能把事故消除在萌芽状态,这样不但将显著地减少变压器故障的发生以及不可预计的电力中断,而且可大量节约经费和时间。1.严格按照有关检修技术标准做好变压器运行前的检查和试验,防患于未燃。2.运行维护(1)保持瓷套管及绝缘子的清洁。定期清理变压器上的污垢,检查套管有无闪络放电,接地是否良好,有无断线、脱焊、断裂现象,定期遥测接地

  18、电阻不大于4,或者采取防污措施,安装套管防污帽。(2)在油冷却系统中,检查散热器有无渗漏、生锈、污垢淤积以及任何限制油自由流动的机械损伤。同时,应常常检验核查变压器的油位、油色,有无渗漏,发现缺陷及时消除。(3)保证电气连接的紧固可靠。(4)按时进行检查分接开关。并检验触头的紧固、灼伤、疤痕、转动灵活性及接触的定位。(5)每三年应对变压器线圈、套管以及避雷器进行介损的检测。(6)每年检验避雷器接地的可靠性。接地必须可靠,而引线应尽可能短。引线应符合相关规定,无断股现象,旱季应检测接地电阻,其值不应超过5。应坚持每年一度的预防试验,将不合格的避雷器更换,减少因雷击过电压损坏变压器。(7)变压器应定时大、小修

  19、,在运行中或发生不正常的情况时,可及时大修。(8)应考虑将在线检测系统用于最关键的变压器上。大型变压器在线监测系统(氢气、局部放电及绝缘在线监测)能预先发现运行中变压器的异常状态。在线监测与专家系统结合起来对变压器绝缘进行预测,把变压器的异常发现于萌芽之初。二、三相电力系统电力变压器的保护方式(一)瓦斯保护原理分析瓦斯保护是反应变压器油箱内部气体的数量和流动的速度而动作的保护,保护变压器油箱内部各种短路故障,特别是对绕组的相间和匝间短路。由于短路点电弧的作用,将使变压器和其他在允许电压下不导电的材料分解,产生气体。气体从油箱经连通管流向油枕,利用气体数量及流速构成瓦斯保护。图2-1上面的触点表示“轻瓦斯保护”,动

  20、作后经延时发出报警信号。下面的触点表示“重瓦斯保护”,动作后启动变压器保护的总出口继电器,使断路器跳闸。当油箱内部发生严重事故时,由于油流不稳定,会造成干簧触点的抖动,此时为使断路器能可靠跳闸,应选用具有电流自保持线圈的出口中间继电器km,动作后由断路器的辅助触点来解除出口回路的自保持。此外,为防止变压器换油或做试验时引起重瓦斯保护误动作跳闸,可利用切换片xb将跳闸回路切换到信号回路。图2-1 瓦斯保护的原理接线.变压器差动保护的工作原理差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等

  21、,差动继电器不动作。当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。 差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护。另外差动保护还有线路差动保护、母线.构成变压器差动保护的根本原则图2-2 变压器纵差保护原理接线图正常运行或外部故障时 (2-1)所以两侧的ct变比应不同,且应使 即: (2-2) 或: (2-3)即:按相实现的纵差动保护,其电流互感器变比的选择原则是两侧ct变比的比值等于变压器的变比。3.不平衡电流产生的原因和消除方法理论上,正常运行和区外故障时, =

  22、i1-i2=0 。实际上,很多因素使= ibp0 。(为不平衡电流)下面讨论不平衡电流产生的原因和消除方法:(1)由变压器两侧电流相位不同而产生的不平衡电流:(/-11)y.d11 接线电流关系图消除方法:相位校正。变压器y侧ct(二次侧):形。 y.d11变压器侧ct(二次侧):y形。 y.y12图2-4三相差动保护原理图(a) 图2-4电流矢量图(b) 图2-4电流相量图(c)可见,差动臂中的 同相位了,但。为使正常运行或区外故障时, =0,则应使。 (2-4)即高压侧电流互感变比应加大倍. 该项不平衡电流已清除.(2)由计算变比与实际变比不同而产生的不平衡

  23、电流:ct的变比是标准化的,如:600/5,800/5,1 000/5,1 200/5.所以,很难完全满足或。 即0,产生.消除方法:利用差动继电器的平衡线差动继电器磁补偿原理图假设正常运行和区外故障时, 那么i2i2。 wph接电流小的一侧, i2. - i2 (- i2) i2i2调整,使 (- i2)= i2.磁势抵消.铁芯中,= =0. 所以w2中无感应电势,j不动作.实际上, 可能不是整数. 应是整数.故仍有一残余的不平衡电流. (2-5)其中 =()/ (+) (2-6) 外部故障时,流过变压器高压侧的最大短路电流.此不平衡电流在整定计算中应予以考虑.(3)由

  24、两侧电流互感器型号不相同而产生的不平衡电流:(ct变换误差) (2-7)其中=1此不平衡电流在整定计算中应予以考虑.(4)由变压器带负荷调整分接头而产生的不平衡电流:改变分接头改变破坏=或 的关系.由此产生新的不平衡电流.(ct二次侧不允许开路,即,不能改变),.u=u./ (2-8)无法消除.所以此不平衡电流在整定计算中应予以考虑.由以上分析可知,稳态情况下, 由三部分所组成. = + +.u (2-9)(5)暂态情况下的不平衡电流:非周期分量的影响: 比稳态大,且含有很大的非周期分量,维持的时间比较长(几十周波). 图2-6暂态电流图最大值出现在短路后几个周波. 引入非周期分量函数 (2-10)

  25、措施:快速饱和中间变流器,抑制非周期分量. 由产生的不平衡电流:当变压器电压猛地增加的情况下(如:空载投入,区外短路切除后)。 励磁涌流.是因为在稳态各种情况下,铁心的磁通滞后于外加电压。如果空载合闸时,正好在电压瞬时值 时接通电路则铁心中具有磁通为 。但由于铁心中的磁通不能突变。因此将出现一个非周期分量的磁通,其幅值为,这样经过半个周期以后,铁心中的磁通就达到。如果铁心中还有剩磁,则总磁通将为。此时变压器的铁心严重饱和,磁电流将剧烈增大,此电流就称为变压器的励磁涌流。其数值最大可达到额定电流的68倍。同时包含了大量的非周期分量和高次谐波分量,励磁涌流的大小和衰减时间,与外电压的相位、铁心剩

  26、磁的大小和方向、电源容量的大小、回路的阻抗以及变压器容量的大小和铁心性质有关系。其涌流的特点有:很大的直流分量(80%基波)。很大的谐波分量,尤以二次谐波为主(20%基波)。形间出现间断(削去负波后)。措施:采用具有速饱和铁芯的差动继电器。间断角原理的差动保护。利用二次谐波制动。利用波形对称原理的差动保护。(三)电流速断保护变压器的电流速断保护是反应于大电流增大而瞬间动作的保护。装于变压器的电源测,对于变压器用引出线上各种各样的形式的短路电流进行保护。为证明选择性,速断保护只能保护变压器的一部分,一般能保护变压器的原绕组,它适合用于容量在10mva以下小容量的变压器,当电流保护时限大于0.5s时,可

  27、在电源侧装设电流速断保护,其接线电流速断保护接线.电流速断保护的整定计算按躲开变压器负荷侧出口d3点的短路最大电流来整定, 即 (2-11)公式(2-11)中可参考系数,取1.31.4;外部短路的最大三相短路电流。2.躲过励磁涌流结合实际经验及实验数据,一般为: (2-12)公式中(2-12)为变压器的额定电流。按照上面的条件计算,选择其较大值作为变压器电流速断保护的启动电流。3.灵敏度的校验 按变压器原边d2短路时,流过保护的最小短路电流校验, (2-13)变压器电流速断保护的优点是接线简单,动作迅速。缺点是只保护变压器一部分。(四)过电流保护变压器相间短路的

  28、保护既是变压器主保护的后备保护,又是相邻母线或线路的后备保护。根据变压器容量大小和系统短路电流的大小,变压器相间短路的后备保护可采用过电流保护、低电压起动的过电流保护和复合电压起动的过电流保护等。1.过电流保护过电流宜用于降压变压器,过电流保护采用三相式接线,且保护应该装设在电源侧。保护的动作电流应按躲过变压器也许会出现的最大负荷电流来整定,即 (2-14)公式(2-14)中可靠系数,一般为1.21.3;为返回系数。确定时,应思考下面两种情况:(1)并列运行的变压器,应思考切除一台变压器以后所产生的过负荷。若各变压器的容量相等,可按下计算 (2-15)公式(2-15)中并列变压器的台数;变压

  29、器的额定电流。图2-8 过电流保护单相接线)降压变压器,应思考负荷中电动机自启动时的最大电流,则 (2-16)公式(2-16)中 自启动系数,其值与负荷性质及用户与电源尖的电气隔离开关。对110kv降压变电站,610kv侧,=1.52.5;35kv侧,=1.52.0 。为正常运行时的最大负荷电流。同时保护的动作时限应该与下级保护配合,即比下级保护中最大动作时限大一个阶梯时限。保护的灵敏度为 (2-17)公式(2-17)中 最小运行方式下,它的灵敏度校验点发生两相短路时,流过保护设施的最小短路电流。最小短路电流应该根据变压器连接组别、保护的接线方式确定。在被保护变压器受电侧母线;在后备保护范围末端短路时,要求=1.2。若灵敏度不满足规定的要求时,则选用灵敏度较高的其他后备保护。2.复合电压起动的过电流保护(1)线原理符合电压起动的过电流保护原理接线所示。负序电压继电器kvn和低电压继电器组成复合电压元件。发生不对称短路时,负序电压滤过器kug有输出,继电器kvn动作,其常闭接点打开,kv失电,其常闭接点闭合,起动中间继电器kam,其接点闭合,电流继电器ka的常开接点因短路而闭合,则时间继电器kt的线圈回路接通。经kt的整定延时后,kt的接点延时闭合,起动出口中间继电器kco,动作于断开变压器两侧短路器。当发生三相短路时,低电压继电器动作,其常闭接

  31、点闭合,与电流继电器一起,按低电压起动过电流保护的动作方式,作用与跳闸。图 2-9复合电压起动过电流保护原理接线)整定计算电流元件动作电流 (2-18)为变压器额定电流动作电压为 (2-19)为变压器的标称电压。低压元件灵敏度为 (2-20)公式中(2-20)相邻元件末端三相金属性短路故障时,保护安装处的最大线电压;低压元件的返回系数。负序电压元件动作电压为 (2-21)负序电压元件灵敏度为 (2-22)公式(2-22)为相邻元件末端不对称短路故障时,最小负序电压。3.负序电流和单相式低压过电流保护对于大容量的发电机变压器组,由于额定电流大,电流元件往往不能满足远后备灵敏度的要求,可采用

  32、负序电流保护,它是由反应不对称故障的负序电流元件和反应对称短路故障的单相式低压过电流保护组成。负序电流保护灵敏度较高,且在y,d接线的变压器另一侧发生不对称短路故障时,灵敏度不受影响,接线也较简单。(五)零序过电流保护在大电流接地的系统中,一般在变压器上装设接地保护。作为便宜变压器本身主保护的后备保护和相邻元件接地短路的后备保护。当系统接地短路时,零序电流的大小和分布是与系统中变压器中性点接地的数目和位置有关。对于有一台变压器的升压变电站,变压器都采用中性点接地运行方式。对于若干台变压器并联运行的变电站,则采用一部分变压器中性点接地运行,而另一部分变压器中性点不接地运行。1.中性点直接接地变压

  33、器的零序电流保护图2-10为中性点直接接地双绕组变压器的零序电流保护原理接线图。保护用电流互感器接于中性点引出线上。其额定电压可选择低一级,其变比根据接地短路电流的热稳定和动态稳定条件来选择。保护的灵敏系数按后备保护范围末端接地短路校验,灵敏系数应不小于1.2。保护的动作时限应比引出线零序电流后备段的最大动作时限大一个阶梯时限。为了缩小接地故障的影响区域及提高后备保护动作的快速性 ,通常配置为两段式零序电流保护,每段各带两级时限。零序段作为变压器及母线的接地故障后备保护,其动作电流以与引出线零序电流保护段在灵敏系数上配合整定,以较短延时(通常为0.5s)作用于断开母联断路器或分段断路器;以较长

  34、延时(0.5+)作用与断开变压器的断路器。零序段作为引出线接地故障的后备保护,其动作电流按上式选择,第一级延时与引出线零序后备段动作延时配合,第二级延时比第一级延时长一个阶梯时限。图2-10中性点直接接地零序电流保护原理接线)中 变压器零序过电流保护的动作电流; 配合系数,取1.11.2; 零序电流分支系数; 引出线零序电流保护后备段的动作电流。2.中性点可能接地或不接地变压器的保护当变电站部分变压器中性点接地运行时,如图2-11所示,当两台变压器并列运行时,其中t1中性点接地运行,t2中性点不接地运行。当线路上发生单相接地时,有零序电流流过qf1、qf3、qf4

  35、和qf5的四套零序过电流保护。按选择性要求应满足t1t3,即应由qf3和qf4的两套保护动作于qf3和qf4跳闸。若因某一些原因造成qf3拒绝跳闸,则应由qf1的保护动作跳闸。当qf1和qf4跳闸后,系统成为中性点不接地系统,而且t2仍带着接地故障继续运行。t2的中性点对地电压将升高为相电压,两非接地相的对地电压将升高倍,如果在接地故障点出现间歇性电弧过电压,则对变压器t2的绝缘危害更大。如果t2为全绝缘变压器,可利用在其中性点不接地运行时出现的零序电压,实现零序过电压保护,作用于断开qf2。如果t2是分级绝缘变压器,则不允许上述出现情况,必须在切除t1之前,先将t2切除。图 2-11中性点接地

  36、运行图因此,对于中性点有两种运行方式的变压器,需要装设两套相互配合的接地保护设施:零序过电流保护用于中性点接地运行方式;零序过电压保护用于中性点不接地运行方式。并且还要按下面的原则进行保护:对于分级绝缘变压器应先切除中性点不接地运行的变压器,后切除中性点接地运行的变压器;对于全绝缘变压器应先切除中性点接地运行变压器,后切除中性点不接地运行变压器。(1)分级绝缘变压器图2-12为分级绝缘变压器的零序过电流和零序过电压保护原理接线图。当系统发生接地故障时,中性点不接地运行变压器的tan无零序电流,报告装置中的ka不动作,零序过电流保护动作,kv因有零序电压3u0而动作。这时,与之并列运行的中性点接

  37、地运行变压器的零序过电流保护则因tan有零序电流,ka动作并经其时间继电器1kt的瞬时闭合常开接地将正电源加到小母线wb上。此正电源经中性点不接地运行变压器的kv接点和ka的常闭接点使kt2起动零序过电压保护。在主保护拒绝动作的情况下,经过较短时限使kco动作,先动作于中性点不接地运行变压器的两侧断路器跳闸。与之并列运行的中性点接地运行变压器的kv虽然也已动作,但由于ka已处于动作状态,其常闭接点已断开,故小母线动作,其零序过电压保护不能起动,要等到整定时限较长的kt1延时接点闭合时,才动作于中性点接地运行变压器的两侧断路器跳闸。图2-12 分级绝缘变压器的接地保护原理图

  38、(2)全绝缘变压器图2-13为全绝缘变压器的零序过电流和零序过电压保护原理图。当系统发生接地故障时,中性点接地运行变压器的零序过电流保护和零序过电压保护都会起动。因kt1的整定时限较短,故在主保护拒绝动作的情况下先动作于中性点接地运行变压器的两侧断路器跳闸。与之并列运行的中性点不接地运行变压器,则只有零序过电压保护动作,其零序过电流保护并不起动作。因kt2的整定时限较长,故后切除中性点不接地运行变压器的两侧短路器。图2-13全绝缘变压器的接地保护设施原理接线图(六)变压器过负荷保护当变压器过负荷电流三相对称,过负荷保护设施只采用一个电流继电器接于一相电流回路中,经过较长的延时后发出信号。对于三

  39、绕组变压器,三侧都装有过负荷启动元件;对于双绕组变压器,过负荷保护应装设在电源侧。其原理如图所示。图2-14变压器过负荷保护接线图过负荷保护的整定计算:过负荷保护的动作电流按躲过变压器的额定电流进行整定 (2-24)公式(2-24)中 可靠系数,一般取1.05; 继电器的返回系数,一般取0.85; 保护安装侧变压器的额定电流。过负荷保护的延时应比变压器的过电流保护时限延长一个阶段,一般取10s。 三、微机保护设施的硬件电路原理(一)微机保护设施 微机保护设施是一个计算机系统。当然应包括硬件和软件两部分。微机保护的硬件电路随所采用的单片机不同而有很大差别。另外,随保护对象的不同在硬件上也有所不同

  40、例如微机高压输电线路保护设施的硬件与微机型发电机变压器保护的硬件在模拟量输人信号的数量和性质、开关量输人、输出的数量上就有很大的差别。由于单片机及其相关的集成电路芯片发展速度很快,因此,微机保护装置的硬件也在持续不断的发展变化。从最初的单八位 cpu构成一个系统,到由多个8位单片机、16位单片机构成微机保护系统。目前,有些微机保护设施的硬件采用了32位的数字信号处理器(dsp),也有的采用嵌人式系统 (power pc)组成微机保护硬件系统的。接口芯片的容量在不断增大、存取速度慢慢的变快。有些芯片从并行接口方式变为串行接口方式。例如存放定值的eeprom芯片、硬件时钟芯片等。这些都为微机保护设施硬件的

  41、设计提供了方便和灵活性。在硬件的制造技术上也发生了很大的变化。采用多层印刷电路板、表贴芯片、自动焊接技术、抗干扰技术极大地提高了微机保护的硬件水平。 在我们介绍的微机保护设施硬件构成的基本框图中。对于一个具体的微机保护设施,通常将这些硬件电路按功能分别布置在几个插件上,各插件安装于一个机箱中,采用总线把各擂件联系在一起,构成一套完整的保护设施。插件一般来说包括模拟变换器擂件、电压一频率(vf)变换插件(具有vfc数据采集系统的装置)、a/d转换部分可与保护微机系统布置在一起,保护微机系统插件、管理微机系统插件、出口、逻辑、信号及告替继电器擂件、逆变稳压电源插件。开关量输人、开关量输出电路根据情况可

  42、与保护或理微机系统布置在同一插件上,也可单设开关量输人、输出插件。 1.机箱目前,微机保护设施所采用的机箱主要有以下几种规格宽度为19英寸、高度为4u (180-)的机箱;宽度为19/2英寸、高度为4u (18。二)的机箱;宽度为19英寸高度为6u (270-)的机箱。 2.擂件每个擂件为一块印刷电路板。对4u的机箱,印刷电路板的大小一般为144-x190mm。对于6u的机箱,印刷电路板的大小一般为162-m x 230-。印刷电路板为多层,一般为四层或六层。为提高微机保护的抗干扰水平,通常将不同电压等级的电路布置在不同层,以减少相互之间的干扰。插件有两种插拔方式,一种为前部擂拔方式;另一种为

  43、后部擂拔方式。 3.面板微机保护设施的面板有两种形式。整面板形式和按插件的分面版形式。目前,绝大多数微机保护设施采用整面板形式。在面板上布置有lcd液晶显示模块、触摸按键、调接口和有关的信号灯。 4.总线各插件之间的联系采用总线连接。对于前插拔方式,在每块插件的后部设有插头,与固定在机箱后部的插座依靠压力接触,各插件之间通过后背插针绕线连接,与微机保护设施外部的连接通过端子排。也可采用总线板将各插件相互联系。 5.保护屏在微机保护应用于电力系统后,出现了保护设施下放安装的方式。对于集中安装在控制室的微机保护屏其要求与以往的保护屏相同。对于安装于开关场的微机保护屏必须设有保护柜,将微机保护屏安装

  44、于柜内。柜内应设有温度调节系统。在高压、超高压变电站,保护下放到开关场,由于强大的电磁干扰会影响保护设施的正常工作,通常要在现场建设具有屏蔽作用的保护小间,将微机保护屏安装tir护小间内。微机保护设施的数字核心一般由cpu、存储器、定时器/计数器等组成。目前数字核心的主流为嵌入式微控制器(mcu),即通常所说的单片机;输入输出通道包括模拟量输入通道(模拟量输入变换回路将ct、pt所测量的量转换成更低的适合内部a/d转换的电压量,2.5v、5v或10v)、低通滤波器及采样、a/d转换)和数字量输入输出通道(人机接口和各种告警信号、跳闸信号及电度脉冲等)。测量部分是测量被保护元件工作状态(正常工作

  45、、非正常工作或故障状态)的一个或几个物理量。并和已给的整定值作比较,从而判断保护是否应该启动。 逻辑部分的作用是根据测量部分各输出量的大小、性质、出现的顺序或它门的组合,使保护设施按一定的逻辑程序工作,最后传到执行部分。 执行部分的作用是根据逻辑部分送的信号,最后完成保护设施所担负的任务。如发出信号,跳闸或不动作。对于同一类型的保护对象,微机保护设施可采用相同的硬件结构,不同的保护功能体现在软件上,缩短了新产品的研制和开发周期。微机保护设施本身消耗功率低,降低了对电流互感器和电压互感器的要求。另外,正在研究的数字式电压、电流传感器更便于与微机保护实现接口微机保护设施的硬件构成框图微机保护装置

  46、的基本硬件构成如图3-1所示。3-1管理微机系统的硬件电路原理 以soc196kb构成的16位单片机系统:图3-1是由80c196kb构成的16位单片机系统。80c196kb为英特尔公司mcs-196系列16位单片机中的一员。采用chmos工艺,耗电少,除正常工作方式外还可工作于两种节电方式,即待机方式和掉电方式。其封装形式有三种plcc, pga (pin gridarray)和qfp (quad flat pack)。其中plcc封装形式和pga封装形式均为68个引脚,qff,封装形式为80个引脚。80c196kb的存储器结构为普林斯顿结构,即程序存储器空间和数据存储器空间总共为64k。在

  47、片内有24字节的专用寄存器和232字节的寄存器阵列,即片内ram, 5个8位并行口。po口是输人口,可作为a/d转换的输人口使用;p1口是准双向口,可作为通用油人输出口使用;p2口是一个多功能口,p3口和p4口bhtif3wr狠的复用口。其中p3口为低8位地址数据总线位地址数据总线单片机构成一个微机系统时,必须用p3口和p4口进行扩展。为将地址数据分离,同样可采用74ls373地址锁存器芯片实现。80c196kb提供地址锁存允许信号ale。为增加数据总线的驱动能力,电路中采用了74ls245数据总线缓冲器芯片。由于程序存储器和数据存储器的

  48、数据线位数据总线的系统时,程序存储器与数据存储器芯片应成对配置其中一片分配为偶地址空间,另一片分配为奇地址空间。图3-2由8oc196kb构成的16位单片机扩展系统。 图3-2 由80c196kb构成的16位单片机扩展系统hoc196kb的系统总线配里方式灵活。可配置为8位总线位总线方式,或配置为在运行中动态可变的总线方式。具体配里为哪一种方式由芯片上的总线宽度(biswidsh)信号的电位和芯片配置寄存器ccr中的位1决定。见下表ccr.1buswtdsh总线buswtdsh总线、buswidsh引脚位低电位时,无论ccr. 1写0或1,总线位,当buswb)sh引脚为高电位时,总线,总线,总线位。单片机提供的控制信号有读信号(rd/,高位地址允许/写高地址信号(bhe/wrh),写/写低地址信号(wr/ wrl),地址锁存允许/地址有效信号(ale/adv/,读信号可直接连接到程序存储器的输出允许(oe/引脚和数据存储器的读信号引脚.而在16位数据总线的系统中,当有可能对字节进行写操作时,写信号必须分成写偶数地址的信号和写奇数地为信号。这可以用锁存后的地址a0, bhe

  50、和wr信号经译码产生。(二)微机保护设施的硬件结构微机保护设施的典型结构 1.微机保护硬件系统如图所示,一般来说包括以下三大部分。(1)模拟量输入系统(或称数据采样系统)模拟量输入系统包括:电压形成、模拟滤波(alf)、采样保持(sh)、多路转换(mpx)以及模数转换(ad)等功能块。该系统将完成将模拟输入量准确地转换为所需的数据量。(2)cpu系统cpu系统包括:微处理器(mpu)、只读存储器(一般用eprom)、随机存取存储器(ram)以及定时器等。mpu执行存放在eprom中的程序,将数据采集系统得到信息输入至ram区的原始数据做多元化的分析处理,以完成各种继电保护的功能。(3)开关量(或数据量)

  51、输入输出系统开关量输入输出系统包括:若干个并行接口适配器、光电隔离器件及有接点的中间继电器等。该系统完成各种保护的出口跳闸、信号警报、外部接点输入及人机对线.信号输入电路微机保护设施输入信号主要有两类,即开关量和模拟量信号。信号输入部分就是妥善处理这二类信号,完成单片微机输入信号接口功能。通常输入的开关量信号不满足单片微机系统输入信号电平要求,因此就需要信号电平转换。为了更好的提高保护设施的抗干扰性能,通常还需要经整形、延时、光电隔离等处理。 输入的电压和电流信号,是模拟量信号。由于微机是一种数字电路设备,只能接受数字脉冲信号,所以就需要将这一类模拟信号转换为数字信号,称为模数变换,输人模拟

  52、量信号的模数变换电路也称作输入信号调理电路。3.单片机微机系统微机保护设施的核心是单片机系统,它是由单片微机和扩展芯片构成的一台小型工业控制微机系统,除了硬件之外,还有存储在存储器里的软件系统。这些硬件和软件构成的整个单片微机系统主要任务是完成数值测量、逻辑运算及控制和记录等智能化任务。除此之外,现代的微机保护应具备各种远方功能,它包括发送保护信息并上传给变电站微机监控系统,接收集控站、调度所的控制和管理信息。这种单片微机系统能是单cpu或采用多cpu系统。一般为了更好的提高保护设施的容错水平,目前大多数保护设施已采用多cpu系统,尤其是较复杂的保护设施,其主要保护和后备保护都是相互独立的微机保护

  53、系统。它们的cpu是相互独立的,任何一个保护的cpu或芯片损坏均不影响其他保护。除此之外,各保护的cpu总线均不引出,输入及输出的回路均经光隔离处理,能将故障定位到插件或芯片,从而大大地提高了保护设施运行的可靠性。但是对于最简单的微机保护,由于保护功能较少,为了简化保护结构,多数还是采用单cpu系统。4.人机接口在许多情况下,单片微机系统必须接受操作人员的干预,如整定值输入、工作方式的变更,对单片机微机系统状态的检查等都需要人机对话。这部分工作在cpu控制之下完成,通常能够最终靠键盘、汉化液晶显示、打印机及信号灯、音响或语言告警等来实现人机对线.输出通道输出通道部分是对控制对象实现控制操作

  54、的出口通道。通常这种通道主要任务是将小信号转换为大功率输出,满足驱动输出的要求。在出口通道里还要防止控制对象对微机系统的反馈干扰,因此出口通道也需要光隔离。显然输出通道仍然是一种被控对象与微机系统之间的接口电路。6.电源微机保护系统对电源要求比较高,通常这种电源是逆变电源,即将直流逆变为交流,再把交流整流为微机系统所需要的直流电压。它把变电所的强电系统的直流电源与微机的弱电系统电源完全隔离开。通过逆变后的直流电源具有极强的抗干扰水平,对来自变电所中的因断路器跳合闸等原因产生的强干扰可以完全消除掉。目前微机保护设施均按模块化设计,也就是说对于成套的微机保护、各种线路和元件的保护,都是用上述五个部分

  55、的模块电路组成的。所不同的是软件系统及硬件模块化的组合与数量不同。不同的保护用不同的软件来实现,不同的使用场合按不同的模块化组合方式构成,这样的微机成套保护设施,对于设计、运行及维护、调试人员都带来极大方便。(三)提高微机保护设施可靠性的措施在常规保护的教材中,我们已知道,对电力系统继电保护的基础要求是选择性、快速性、灵敏性和可靠性。当然,以微型计算机实现的保护设施也应满足这些基础要求,提出提高微机保护可靠性的措施,旨在更强调微机保护设施的可靠性。这是由于微机保护设施有许多不同于常规保护的特点所致。1.微机保护设施的硬件电路采取了大量的大规模和超大规模集成电路,虽然这些芯片本身的质量毋庸置

  56、疑,但由于它们长期工作在强电磁场环境下,因此其整体工作的可靠性依然是十分重要的问题,一旦某一元件受到损坏,将导致非常严重后果。2.微机保护设施的硬件电路中,大部分工作在低电压(3-5v),高频率的信号下,因此,与常规保护相比更易受到干扰信号的侵害。3.微机保护设施的正确工作不仅依赖与硬件电路的正确性,还依赖于软件的正确性。而软件的正确工作不仅依靠程序的严格考验,证明是正确无误的,还必须依靠总线信号的正确性。一旦总线信号受到干扰,也将破坏保护设施的正确工作。综上所述,运行中的微机保护设施的可靠性主要面临两个方而的问题。一是微机保护设施硬件的可靠性及干扰信号对硬件可靠性的影响,二是软件的可靠性及干扰信

  57、号对软件可靠性的影响。据ke001年全国电网继电保护与安全自动装置运作情况统计分析资料介绍,2001年220kv及以上系统保护不正确动作责任分析指出,2001年220kv及以上系统保护不正确动作总数为217次。其中,属于运行部门值班人员责任20次,运行部门保护人员责任53次,设计部门责任4次 ,制造部门责任109次,基建部门责任10次,其他部门责任19次,原因不明2次。在属于制造部门责任的109次不正确动作中,属于元件质量不良的84次,占总次数的77%.属于软件间题的8次,占总次数的5.5%,可见如果在硬件和软件方面进一步提升可靠性,即可消除大部分不正确动作,大幅度的提升继电保护的正确动作率。目前

  58、,在提高微机保护设施可靠性方面采取的方案主要有:强调硬件设计方面的高可靠性水平,加强抗干扰设措施;采用在线自动检验测试技术,及时有效地发现硬件故障,给出相应告警信号,并将保护设施的出口跳闸回路闭锁;采用“看门狗”或硬件自动复位技术,防止软件受干扰造成程序“飞逸”的现象;采用冗余设计,保护配置双重化等.应当指出,微机保护的抗千扰设计是一个十分复杂的问题。很难制定一个严格统一的方案。对于干扰信号的研究、干扰对微机保护设施的影响及应采取的对策仍在不断的研究中,可喜的是,经过近20年的研究和摸索,在提高微机保护装!的可靠性方面已经积累了较丰富的经验。在微机保护的研究、制造、运行、管理等各部门的共同努力下,我国微

  59、机保护的可靠性逐步的提升,据国家电力调度通信中心和中国电力科学研究院所作的2001年全国电网继电保护与安全自动装置运作情况统计分析指出,全国电网220kv系统微机继电保护设施的正确动作率为99.47%, 330kv和500kv系统微机继电保护设施的正确动作率为99.04%。四、保护配置与整定计算(一)电力变压器保护配置根据变压器不同的故障和容量情况,我们一般按照下面介绍来选取保护方案:1.当容量为0.8mva及以上的油浸式变压器和0.4mva以上的车间内油浸式变压器,均应该安装瓦斯保护,当油面下降的时候应瞬时动作于跳闸信号;当产生大量瓦斯时,应该动作于跳闸,使其变压器撤除运行,达到保护的目的。

  60、2.当引出线、及套管内部的短路故障,应按下列方案进行保护,保护瞬时动作于断开变压器的各侧短路器。(1)6.3mva以上的厂用电系统和并列变压器,以及10mva以下的厂用备用变压器和单独运行的变压器,当后备保护时限大于0.5s时,装设电流速断保护。(2)对于6.3mva及以上厂用电工作变压器和并列运行的变压器,以及10mva以下的厂用备用变压器和单独运行的变压器,以及2mva及以上用电流速断保护灵敏性不符合标准要求的变压器,应装设纵差联动保护。(3)对于高压侧电压为330kv及以上的变压器,要装设双重差动保护。(4)对于发电机变压器组,当发电机与变压器之间没有短路器时,按发电机变压器组的处理方法来处理。3.纵联差动保护应该符合下列要求:(1)装设纵连差动保护时应该躲过变压器的历次涌流和外部短路产生的不平衡电流。(2)应该在变压器过励磁时不误动作。(3)差动保护应思考变压器的套管以及引出线.对外部相间短路引起的变压器过电流,应按照下列装设相应的保护和后备保护。保护动作后,应带时限动作于跳闸。(1)过电流保护通常用于降压变压器,保护整定值应考虑事故可能出现的过负荷。(2)复合电压起动的过电流保护,通常用于升压变压器、系统联络变压器和过电流保护不符合灵敏性要求的降压变压器。(3)序电流和单相式低压起动的过电流保护,通常用于63mva及以上的升压变压器。(4)当采用复合

  1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。

  2. 本站的文档不包含任何第三方提供的附件图纸等,若需要附件,请联系上传者。文件的所有权益归上传用户所有。

  3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。

  5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。

  7. 本站不保证下载相关资源的准确性、安全性和完整性, 同时也不承担用户因使用这一些下载相关资源对自己和他人造成任何形式的伤害或损失。

  2023年公汕尾市陆河县《行政职业能力测验》临考冲刺试卷含解析

  2023年公市当雄县《行政职业能力测验》考前冲刺预测试卷含解析

  2023年公山东省德州市庆云县《行政职业能力测验》模拟试题含解析

  2023年公北京市房山区《行政职业能力测验》高分冲刺试题含解析

  2023年公浙江省嘉兴市嘉善县《行政职业能力测验》全真模拟试题含解析

  高中英语选择性必修一 Unit5 Working the Land period6Assessing Your Progress教案

  高中英语选择性必修二 Unit3 Period 5 Write about a healthy diet 教案




上一篇:聊一聊“华为智能光伏发电机”的概念 下一篇:全市工业重点项目现场观摩牡丹区新能源轿车驱动体系工业园项目